M.A.C.'07 MAVs

M. Müller A. Schröter C. Lindenberg

September 2007

Coaxial Helicopter for Indoor

Manual control with video

- made from 3mm Depron sheets
- light but fragile

EMAV'06

- industrial EPP formed in molds
- flexible

- glass/carbon made in moldsvery rigid but heavy

Fixed Wing for Outdoor

- computer cut EPP
- carbon/glass inforced

Paparazzi autopilot

Sensors - Attitude

PerkinElmer TPS334 infrared thermopiles (far infrared 5-14µm)

Sensors – 3D Position/Speed

u-blox LEA-4P GPS receiver, 4Hz update rate, ceramic patch antenna, mounted on autopilot board inside aircraft

Communication

Payload - Pitch Camera

fly straight towards target with camera pitch angle autonomously being updated

Payload – Ball Drop

do ball drop first

approach target with circle and straight line

take aircraft position, speed and attitude into account

use wind estimation